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Abstract
The transverse and longitudinal local susceptibilities, the dynamic spin
correlation function and the local magnetic moment of Fe, Co and Ni are
calculated, using the first-principles density of states and the dynamic non-local
approximation of the spin-fluctuation theory. A remarkable agreement between
theory and experiments on magnetovolume effect and neutron scattering has
been found.

1. Introduction

Magnetic properties of ferromagnetic transition metals at zero temperature are fairly
successfully described [1–5] within the framework of the local spin-density approximation
(LSDA) to the density functional theory [6–9]. However, attempts to describe the temperature
dependence of the magnetic properties within the framework of this approximation do not
lead to satisfactory results. In order to explain the magnetic properties of ferromagnetic
metals at finite temperatures one usually uses the spin-fluctuation approach (see, e.g. [10,11]).
Unfortunately, the spin-fluctuation theory (SFT) is very complicated and one has to introduce
a number of significant simplifications in actual calculations (the Hubbard’s Hamiltonian, the
static local approximation, a model density of states (DOS), a step Fermi function etc). On
the other hand, part of the electron–electron correlation has already been taken into account
in the self-consistent LSDA potential, and the question is how important the remaining part is
for the ferromagnetic metals.

In order to find out the relative contributions of the spin fluctuations and the singularities
of the electron structure in forming the on-site local magnetic moment, in paper [12] we
performed dynamic spin correlator calculations. The calculations showed that in the one-
electron approximation the value of the local moment is reproduced well enough, but the
time of its damping is comparable with the time of electron hopping from one site to
another, τe ∼ h̄/W ∼ 0.1–1 fs (W is the bandwidth and 1 fs = 10−15 s). Then, to take
into account the electron correlations, which substantially slow down the damping of the
local moment, we developed a model, based on the single-site approximation of multiple
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scattering theory, and applied it, first, to study the paramagnetic state [13], and then also the
ferromagnetic one [14, 15]. However, the numerical calculations carried out at that time had
a preliminary character and were fairly simplified. In particular, the basic initial parameter
of the model, the mean spin-polarized DOS, was calculated only within the implicit account
of spin fluctuations. Recently we developed a rigorous method for calculation of magnetic
characteristics at finite temperatures [16], based on the dynamic non-local approximation
(DNA) of the SFT. In this method the mean spin-polarized DOS is obtained self-consistently
from a system of nonlinear equations only slightly more complicated than the standard mean-
field-theory system of equations. The initial parameters of the calculation are the DOS and
the magnetic moment at T = 0 for a specific metal. In our papers [17, 18] the developed
method was successfully applied for calculations of some magnetic properties of Fe, Co and
Ni. In the present paper, it is applied for calculations of the local magnetic characteristics
such as the transverse and longitudinal susceptibilities, the dynamic spin correlation function
and the local magnetic moment. In fact, for the first time a self-consistent calculation of the
local magnetic characteristics of Fe, Co and Ni is performed with account taken of the real
band structure and spin fluctuations. Note that almost all of the recent calculations of the local
magnetic characteristics of Fe, Co and Ni (see, e.g. [10,11,19–22]) have been performed in the
static approximation, i.e. the spin fluctuations have been treated classically. A more detailed
comparison of our approach with the ones of [10, 11, 19–22] is given in [17].

2. Calculation formulae

2.1. Local magnetic characteristics

A detailed derivation of the formulae for the local magnetic characteristics of ferromagnetic
metals at finite temperatures is given in our paper [14]. Here we present only the initial formulae
and the final expressions necessary for numerical calculations. Note that all expressions are
obtained for the choice of the z-axis along the magnetization direction in the cubic crystal.

The Fourier transform of the local susceptibility is given by

χ
αβ

L (ω) ≡ χαβnn (ω) = i

h̄

∫ ∞

0
〈[Ŝαn (t), Ŝβn (0)]〉eiωt dt (1)

where Ŝαn (t) is the spin moment operator on the nth site of the lattice, taken in the Heisenberg
representation, index α (= x, y, z) specifies components of the spin operator, angle brackets
denote quantum statistical averaging and square brackets denote commutation. From (1) for
the imaginary parts of zero (unenhanced) local susceptibilities we obtain

Im χ+−
L0 (ω) = Nπ

∫
f (ε)[ν↑(ε)ν↓(ε + h̄ω)− ν↓(ε)ν↑(ε − h̄ω)] dε (2)

Im χσσL0 (ω) = Nπ

∫
f (ε)νσ (ε)[νσ (ε + h̄ω)− νσ (ε − h̄ω)] dε. (3)

Here f (ε) = [exp((ε − µ)/T ) + 1]−1 is the Fermi function, where T is the temperature in
energy units and µ is the chemical potential, σ = ↑,↓ or ±1 is the spin projection index, N is
the number of energy bands, and

νσ (ε) = 1

π
Im gσ (ε) (4)

is the mean spin-polarized DOS of the one band, where gσ (ε) is the mean single-site Green
function (see section 2.2).
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The zero susceptibility is fully reconstructed from its imaginary part by application of the
Hilbert transformation

χ(z) = − 1

π

∫
Im χ(ω′)
z− ω′ dω′ (5)

where z is a complex number from the upper half-plane.
Enhanced susceptibilities are calculated from the formulae

χ+−
L (ω) = χ+−

L0 (ω)

1 − uχ+−
L0 (ω)

(6)

χzzL (ω) = 1

4

χ
↑↑
L0 (ω) + χ↓↓

L0 (ω) + 2uχ↑↑
L0 (ω)χ

↓↓
L0 (ω)

1 − u2χ
↑↑
L0 (ω)χ

↓↓
L0 (ω)

(7)

where u is the effective constant of the electron–electron interaction (see section 2.2).
Note that in the standard random-phase approximation (RPA) the formulae of (6) and (7)

type are obtained [23] for susceptibilities χ(q, ω), where q is the wavevector, i.e. the usual
RPA susceptibility contains enhancement for one fixed q-mode only. This approach is suitable
for an ideal crystal. But at finite temperatures ideality is broken and the strong interaction of
modes with different q takes place. At finite temperatures our enhanced local susceptibility
χL(ω) is preferable to χRPA

L (ω) = 1
Na

∑
q χ(q, ω), Na being the number of q-vectors in the

Brillouin zone, since the main contribution to thermodynamic quantities in this case is due to
short-wave spin excitations.

The dynamic spin correlation function is determined as

Fαβ
nn (t) = 1

2 〈{Ŝαn (t), Ŝβn (0)}〉 (8)

where the braces denote anticommutator. Taking into account the fluctuation–dissipation
theorem (see, e.g. [24]) for the single-site frequency correlation function, we obtain

F(ω) ≡
∑
α

F αα
nn (ω) =

∑
α

∫
Fαα
nn (t)e

iωt dt =
(
n↑ − n↓

2

)2

δ(ω) + A(ω) (9)

where

nσ = N

π

∫
Im gσ (ε)f (ε) dε (10)

is the number of electrons with spin projection σ , and

A(ω) =
∑
α

∫
1
2 〈{#Ŝαn (t),#Ŝαn (0)}〉eiωt dt

= h̄ coth
h̄ω

2T
Im

[
1

2

(
χ+−
L (ω) + χ∗+−

L (−ω)) + χzzL (ω)

]
(11)

(#Ŝαn = Ŝαn − 〈Ŝαn 〉 is the fluctuation of the spin moment operator.) By inverse Fourier
transformation of function (9) we find the time correlation function

F(t) = 1

2π

∫
F(ω)e−iωt dω =

(
n↑ − n↓

2

)2

+
1

π

∫ ∞

0
A(ω) cosωt dω. (12)

One of the basic characteristics measured by polarized neutron scattering is the local spin
moment. We determine the effective local spin moment in a frequency interval [−ω,ω] by
the formula

SL(ω) =
(

1

π

∫ ω

0
F(ω′) dω′

)1/2

=
[(

n↑ − n↓
2

)2

+
1

π

∫ ω

0
A(ω′) dω′

]1/2

. (13)

It is clear that in the infinite frequency interval this quantity coincides with a root mean square
of the local spin moment

SL ≡ SL(∞) = (F (t = 0))1/2 = 〈Ŝ2(t = 0)〉1/2. (14)
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2.2. Mean single-site Green function and effective constant of the electron–electron
interaction

A method for self-consistent calculation of magnetic properties of ferromagnetic metals at
finite temperatures, based on the usage of real band structure and the DNA of the SFT, was
developed in detail in [16]. Here we present only the formulae necessary for calculation of the
mean single-site Green function and effective constant of the electron–electron interaction.

The mean single-site Green functions are calculated from the formula

gσ (ε) =
∫

ν(ε′)
ε − σ 〈Vz〉 −#%σ(ε)− ε′ dε′ (15)

where ν(ε) is the non-magnetic DOS (per unit cell, band and spin),

〈Vz〉 = −u(n↑ − n↓)/2 (16)

is the mean value of the variable exchange field, and

#%σ(ε) = gsσ (ε)〈#V 2
z 〉

1 + 2σ 〈Vz〉gsσ (ε)
+ 2gsσ̄ (ε)〈#V 2

x 〉 (17)

is the fluctuation contribution to the self-energy part (gsσ (ε) is determined by expression (15)
at #%σ(ε) = 0). The mean square of the thermal fluctuations of the on-site exchange field
(‘fluctuations’, for short) in their turn are expressed in terms of gσ (ε). So, equations (15)–(17),
complemented by the equations for 〈#V 2

α 〉, α = x, z, and by the condition of the conservation
of the total number of electrons:

n↑ + n↓ = ne (18)

make up a system of nonlinear equations.
At zero temperature the fluctuations 〈#V 2

α 〉 vanish, and the system of equations (15)–
(18) turn into the mean-field-theory system of equations (10), (16) and (18). This gives
one an opportunity to find the effective constant u from a known magnetic moment m0 =
gµB(n↑ − n↓)/2; after that, at any fixed temperature, equations (15)–(18) make up a closed
system, whose solution gives the function gσ (ε). Details of the calculations are given
in [17, 18, 25].

3. Results and discussion

As the initial DOS, we take the DOS of non-magnetic metal calculated in the local-density
approximation by the KKR method with a self-consistent potential [5]. The smoothed DOSs
of the d band ν(ε) used for calculation are represented in figures 1, 6 and 8 of [17] for Fe,
Co and Ni, respectively. (With the help of smoothing we take into account the damping of
one-electron states resulting from electron–electron correlations.) The experimental values of
the magnetic moment m0 used are given in table 2 of [17].

The results of our calculation of the effective constant u for Fe, Co and Ni are given
in table 1. In the same table, for comparison, we present the values of the effective Stoner
parameter I , obtained in the LSDA calculations [1, 3, 4]. The deviations of our values of u
from the corresponding ones of I are considerable. However, one should not attach much
importance to this fact. Firstly, as it was shown in [4] by Cr as an example, the approximate
values of I given in table 1 are probably within about 10% of the correct values for the assumed
form for the exchange–correlation functional. (The exact value of I for Cr is 10% greater than
the approximate one.) Secondly, and above all, our values for the constant u depend on the
degree of smoothing of the DOS. So, in our paper [26] the DOS for Fe was smoothed with
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Figure 1. The imaginary part of the zero longitudinal local susceptibility of iron at T/TC = 0.0
(· · · · · ·), 0.93 (– – –), and 1.0 (——).

Table 1. Our results for the effective constant of the electron–electron interaction u of Fe, Co and
Ni, compared to the corresponding results for the exchange–correlation (effective Stoner) parameter
I obtained in LSDA (all values in units of eV).

Fe Co Ni

Present calculation 1.08 1.25 1.16
Gunnarsson [1] 0.92 0.99 1.01
Andersen et al [3] 0.91 — 0.99
Janak [4] 0.92 0.98 1.01

Table 2. The local magnetic moment ML for Fe, Co and Ni at zero, near critical and Curie
temperatures. (TC is the Curie temperature calculated in the DNA and given in the last column of
table 1 in [17].)

Fe Co Ni
T/TC ML(T )/ML(0) T /TC ML(T )/ML(0) T /TC ML(T )/ML(0)

0.00 1.00 0.00 1.00 0.00 1.00
0.93 0.98 0.78 1.06 0.88 1.06
1.00 0.99 1.00 1.14 1.00 1.12

the Lorentz function of half-width , = 0.0675 eV (in the present paper , = 0.0742 eV), and
u = 0.96 eV was obtained, which agrees closely with the value I = 0.92 eV obtained in [1,4].

Within the framework of an article, a detailed analysis of all complex susceptibilities
of the three metals at various temperatures does not seem possible. Let us illustrate the
behaviour of the local susceptibilities by an example of the imaginary part of the zero and
enhanced longitudinal susceptibilities of iron represented in figures 1 and 2. As can be
seen from figure 1, the temperature dependence of the imaginary part of zero susceptibility
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Figure 2. The imaginary part of the enhanced longitudinal local susceptibility of iron. (The
notation is as for figure 1.)

Im χzzL0(ω) = 1
4

∑
σ Im χσσL0 (ω) is weak. (Since Im χσσL0 (ω) is an odd function, the calculations

of Im χzzL0(ω) and Im χzzL (ω) are performed only at ω � 0.) According to the formula

Im χσσL0 (ω) � π

N
ν2
σ (µ)h̄ω (19)

resulting from (3) at low h̄ω and with neglect of the temperature broadening of the Fermi
function, the linear dependence of Im χzzL0(ω) is retained in a sufficiently large energy interval,
and in full accordance with the behaviour of the DOS on the chemical–potential level (see
figure 4 of [17]) the susceptibility Im χzzL0(ω) increases with increasing temperature. From
comparison of figure 2 with 1, it is seen that the enhancement of the susceptibility due to
electron–electron correlations occurs predominantly in the region h̄ω < 2 eV. As for the
temperature variations, they are qualitatively similar to those of the zero susceptibility, but
quantitatively they are considerable. Besides, with the increase of temperature the enhancement
increases. This is due to the fact that with the increase of temperature the real part of the zero
susceptibility in the energy region h̄ω < 2 eV increases considerably, and this, due to the
resonance denominator of the formula

Im χzzL (ω) = π

N
h̄ω

1

4

∑
σ

(
1 + uRe χσ̄ σ̄L0 (0)

1 − u2Re χσσL0 (0)Re χσ̄ σ̄L0 (0)

)2

ν2
σ (µ) (20)

resulting from (7) at small h̄ω, leads to the sharp increase of the enhancement.
The results of the calculation of the effective local spin moment SL(ω) are represented

in figures 3–5. As can be seen from the figures, the local spin moment in a wide energy
interval varies only slightly with the increase of temperature. This is due to the fact that
a decrease in the first term in (13) is compensated for by an increase in the second one.
However, in a small energy interval such a compensation does not occur. Here the local moment
depends strongly on the temperature, and the smaller the interval, the sharper the dependence.
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Figure 3. The effective local spin moment SL(ω) in a frequency interval [−ω,ω] for iron.
(The notation is as for figure 1.)
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Figure 4. The effective local spin moment SL(ω) in a frequency interval [−ω,ω] for cobalt at
T/TC = 0.0 (· · · · · ·), 0.78 (– – –), and 1.0 (——).
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Figure 5. The effective local spin moment SL(ω) in a frequency interval [−ω,ω] for nickel at
T/TC = 0.0 (· · · · · ·), 0.88 (– – –), and 1.0 (——).
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Figure 6. Time-dependent spin correlation function F(t) for iron. The horizontal line indicates
the asymptotic value [(n↑ − n↓)/2]2. (The notation is as for figure 1.)
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Table 3. Calculated and experimental values of the square of the local spin moment for Fe, Co and
Ni at the Curie temperature.

Fe Co Ni

Hasegawa [31, 32] 3.6 — 0.2
Present calculation 3.16 2.20 0.81
Experiment [33] 2.45 2.45 0.65

For Fe at T = TC = 1.49T exp

C , the computed values 1.0 and 1.3 µB of the local magnetic
moment ML = gµBSL in the energy intervals h̄ω = 0.12 and 0.2 eV agree fairly well
with the experimental values 1.3 and 1.55 µB , obtained at T = 1.25T exp

C in [27, 28]. Note
that the value of the local magnetic moment in the energy window 0.1 eV in our one-
electron calculations [13] was only 0.36 µB , which is much less than the experimental
value. A good agreement with the experimental data on the polarized neutron scattering
is also obtained for nickel (the experimental data for Co are absent from the literature): the
values of ML(h̄ω = 0.12 eV) = 0.55 µB and ML(h̄ω = 0.2 eV) = 0.7 µB , computed at
T = TC = 1.54T exp

C , are in good agreement with the values 0.6 and 0.9 µB , respectively,
measured at T = 2T exp

C [10].
The results of the calculation of the local magnetic moment in the infinite energy interval,

ML(T )/ML(0), of Fe, Co and Ni by formula (13) are given in table 2. As can be seen from
table 2, the local moment in the infinite energy interval depends only slightly on the temperature,
being almost constant for Fe, and slightly increasing for Co and Ni. The fact that 〈M2

L〉1/2 only
slightly changes with temperature is supported by experiments on magnetovolume effect (see,
e.g. [11,29,30] and references therein). Note that for Fe the weak change of the local magnetic
moment with increasing temperature was obtained in other theoretical calculations as well.
However, for Ni the calculated values of ML(TC)/ML(0) were nowhere near unity [30].

The results of the calculation of the time correlation function F(t) for Fe, Co and Ni
are represented in figures 6–8. As can be seen from figure 6, the square of the local spin
moment S2

L = F(t = 0) for iron at T = 0 equals 3.22, which almost coincides with the
value 3.18 obtained in our one-electron calculation [12] using the constant-matrix-element
approximation. At T = TC , the square of the local spin moment of iron varies inconsiderably
and reaches the value 3.16, which is close to the value S2

L � 3.6 obtained by Hasegawa [31]
in the two-field method at T = 1.1T exp

C . For Co and Ni, the computed values of S2
L(TC)

are equal to 2.20 and 0.81, respectively. The latter value substantially differs from the value
S2
L � 0.2 obtained by Hasegawa [32] for Ni at T = 1.1T exp

C . However, as can be seen from
table 3, our values for S2

L(TC) are in better agreement with the experimental values obtained
from the relation meff = gµB

√
S(S + 1) for the effective magnetic moment than the ones of

Hasegawa [31, 32]. The estimate of the square of the local spin moment in the paramagnetic
region using the formula S2

L = S(S+1) = m2
eff /(gµB)

2 for ferromagnetic metals is, of course,
rough enough, but a better estimate is apparently not available.

As for the time correlation function F(t) at t �= 0, its fluctuating part A(t) is large
enough beyond the main maximum, determined by the bandwidth, as well. So, while, in iron
at T = 0 in one-electron approximation, A(t) vanishes during t0 � 0.3 fs (see footnote 3
in [15]), with account taken of spin fluctuations, it vanishes during 4 fs. With an increase of
the temperature, the damping time of the local spin moment increases. This is due to the rise
in the fluctuating part of the frequency correlation function A(ω) in the low-frequency region.
According to (11), the temperature dependence of the function A(ω) is determined by two
factors: the hyperbolic cotangent and the sum of the imaginary parts of the susceptibilities.
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Figure 7. Time-dependent spin correlation function F(t) for cobalt. The horizontal line indicates
the asymptotic value [(n↑ − n↓)/2]2 (the notation is as for figure 4).
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Figure 8. Time-dependent spin correlation function F(t) for nickel. The horizontal line indicates
the asymptotic value [(n↑ − n↓)/2]2 (the notation is as for figure 5).
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At the temperatures under consideration, the hyperbolic cotangent differs from unity only
in the low-energy region: h̄ω < 2T ∼ 0.1 eV. Outside this energy region, the temperature
dependence of A(ω) is determined by the sum of the imaginary parts of the susceptibilities,
whose behaviour is similar to Im χzzL (ω) represented in figure 2.

4. Conclusions

The numerical investigation of local magnetic characteristics of Fe, Co and Ni at finite
temperatures using the mean single-site Green function, calculated self-consistently in the
framework of the DNA of the SFT, has shown that correlation effects significantly change
the local characteristics especially at low energies, and allowed us to obtain, for example,
for the Fe local magnetic moment ML at T = TC in the energy windows 0.12 and 0.2 eV,
the values 1.0 and 1.3 µB , in accordance with values 1.3 and 1.55 µB , obtained in polarized
neutron scattering experiments at T = 1.25TC [27, 28]. Note that the value of ML(ω) in
the energy window 0.1 in our one-electron calculations is only 0.36 µB , which is much less
than the experimental one. Since for Fe and Ni the values of the local moment in the energy
windows 0.12 and 0.2 eV are in good agreement with the experimental values, the results of
our calculation can be considered as predictive for future experiments on neutron scattering
for Fe, Co and Ni in sufficiently large energy windows.

The value ofML(TC)/ML(0) for Ni is near unity in full agreement with experimental data
on the magnetovolume effect, whereas in previous treatments it is substantially smaller (see
table 1 of [30]).

The calculated damping time for the spin correlation function is one order greater than
the electron hopping time, but is still less than the characteristic value determined by the Curie
temperature: τ ∼ h̄/TC ∼ 10−13 s.

Finally, note that the present calculation gives clear evidence that the DNA of the SFT
is valid for adequate description of the local magnetic characteristics of ferromagnetic metals
at finite temperatures. In a future paper, we intend to use this approach for the numerical
calculation of the temperature dependence of the local magnetic moments in Fe–Ni invar alloys,
which have attracted increasing interest recently (see, e.g. [34–37] and references therein).
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